Introduction to
Object-oriented Programming
in Smalltalk

Portland State

IIIIIIIIII

Objects are responsible for their own
actions!

» In procedural programming, | write code
that reaches into the internals of some data
structure and twiddles with the bits

———41 010 1‘ 1| 0] O 1‘ I L string
7
4 process\ process
process
reads/ reads/
reads/ writes writes
\ writes _ J \ /

Portland State

IIIIIIIIII

» In O-O programming, | politely request
some other object to perform some work on
my behalf, and it politely answers me

ws] 1

———1 010 1\1001}1 ______

concat
copy

/RN / __

Portland State

IIIIIIIIII

» In O-O programming, | politely request
some other object to perform some work on
my behalf, and it politely answers me

Encapsulation
boundary concat

_

Portland State

IIIIIIIIII

» In O-O programming, | politely request
some other object to perform some work on
my behalf, and it politely answers me

Encapsulation
boundary concat

_

Portland State

IIIIIIIIII

» In O-O programming, | politely request
some other object to perform some work on
my behalf, and it politely answers me

Encapsulation
boundary concat

_

Portland State

IIIIIIIIII

» In O-O programming, | politely request
some other object to perform some work on
my behalf, and it politely answers me

Encapsulation
boundary concat

_

aNewsString

Portland State

IIIIIIIIII

» In O-O programming, | politely request
some other object to perform some work on
my behalf, and it politely answers me

Encapsulation
boundary concat

_

Portland State

IIIIIIIIII

Computation as Simulation

 Encapsulation is key
 Autonomous objects in the program
represent objects in the real world

e just like discreet event simulation

 Antropomorphize!

e |t's OK to think about this object talking to that
object...

e |n fact, it's recommended

Portland State

IIIIIIIIII

Programming Philosophy

* Object-Oriented programming is
programming by simulation.

— The algorithm is less important than the structure of
the solution.

* When requirements change:

— If the structure represented the structure of some
‘reality’, then the new requirements will be consistent
in that reality.

— Object-oriented design is the search for this
structure: uncover the structure rather than construct

In isolation.

Portland State

IIIIIIIIII

Shopping vs. Building

 Constructing an Object-oriented
application is a process of shopping for the
components that one needs

— occasionally we add a new item to the shelf.

— usually we can find a component that almost fits.

- The openness of an OO language allows
the programmer to change the component
that almost fits into one that is a good fit.

— works only if we have a rich set of components on the
shelf, and if they are open to change.

Portland State

IIIIIIIIII

Is this the only view of OO
Programming?

No! People disagree on the meaning and
role of:

. Encapsulation

. Types

’
2

3. Inheritance
4. Polymorphism
5

. Sets and classes

Portland State

IIIIIIIIII

Smalltalk

« Squeak is an open-source version of
Smalltalk.

— Smalltalk is still the best example of a Pure O-O
language

— The Squeak workspace is a place in which you can
create and interact with objects.

 Large and active community of contributors

— Runs “bit identical” on just about any platform,
including many PDAs

Portland State

IIIIIIIIII

The Squeak Environment

A “place” to experiment with objects

 Forget applications, files, compilers, data...
* Focus on objects

Portland State

IIIIIIIIII

Portland State

IIIIIIIIII

The Squeak World
0‘\)00\‘ —
9

sources &

image
changes

host OS

Smalltalk Syntax

* No syntax for classes, packages, etc.

— Class creation and method categorization are done
iImperatively using the development tools

- The method syntax is simple, but different

>= aString

"Answer whether the receiver sorts after or equal to
aString. The collation order is simple ascii (with case
differences)."

A (self compare: self with: aString collated: AsciiOrder) >= 2

Portland State

IIIIIIIIII

Smalltalk Syntax

* No syntax for classes, packages, etc.

— Class creation and method categorization are done

iImperatively using the development tools

- The method syntax is simple, but different

aString

"Answer whether the receiver sorts after or equal to
aString. The collation order is simple ascii (with case
differences)."

A (self compare: self with: aString collated: AsciiOrder) >= 2

Portland State

IIIIIIIIII

Smalltalk Syntax

* No syntax for classes, packages, etc.

— Class creation and method categorization are done
iImperatively using the development tools

- The method syntax is simple, but different

name of argument

Portland State

IIIIIIIIII

Smalltalk Syntax

* No syntax for classes, packages, etc.

— Class creation and method categorization are done
iImperatively using the development tools

- The method syntax is simple, but different

>= aStrin

"Answer whether the receiver sorts after or equal to
aString. The collation order is simple ascii (with case
differences)."

A (self compare: self with: aString colladed: AsciiOrder) >= 2

method comment

Portland State |

IIIIIIIIII

Smalltalk Syntax

* No syntax for classes, packages, etc.

— Class creation and method categorization are done
iImperatively using the development tools

- The method syntax is simple, but different

>= aString

"Answer whether the receiver sorts after or equal to
aString. The collation order is simple ascii (with case
differences)."

A (self compare: self with: aString collated: AsciiOrder) >= 2
A

\
cOde'

Portland State

IIIIIIIIII

Read code

* The best way to become familiar with Smalltalk
programming is to read the code in the image

e Expecttoread 10 to 100 lines of code for each
one that you write

e |f you find that you are writing long methods,
you haven't “got it” yet.

* Find a method in the image that does
something like what you want, an learn from it

Portland State

IIIIIIIIII

Smalltalk — The Language

Literal Objects

27 The unique object 27

18.5 The floating point number 18.5

1.85e1 same as above

'a string’ a string

#request the symbol request. It is unique; two symbols

with the same name denote the same object

$r the single character r

#(3- 2.7 'a string’) | an array literal. This is a heterogeneous array
containing an integer, a float, and a string

Portland State

IIIIIIIIII

Sending Messages

Unary Message (no arguments)

 pising

receiver

(target of message) selector

» selector is a keyword-like symbol

— examples: 3 factorial
7/ negated
$c asinteger

— note: no colon at the end of the symbol

Portland State

IIIIIIIIII

Binary Message (one argument!)

e

receiver selector

» selector is one or two special characters

Portland State

IIIIIIIIII

/=5
1 +3
17 /1 3

171/3

message = 5 sent to object 7
message + 3 sent to object 1

message // 3 sent to integer object 17
(result is 5)

message / 3 sent to integer object 17
(result is)

Binary Message (one argument!)

» selector is one or two special characys

Portland State

IIIIIIIIII

/=5
1 +3
17 /1 3

171/3

receiver

e

selector

Not exactly; i is

not an object. It'sa
variable that's bound to
an object

message = 5 sent to object 7
message + 3 sent to object 1

message // 3 sent to integer object 17
(result is 5)

message / 3 sent to integer object 17
(result is)

Keyword Messages

* Ohe or more arguments

— Examples:

#3579 11) at: 2
game movefrom: pinA to: pinB using: pinC
5 between: 0 and: 9

* The colon *;’ indicates to the parser that an
argument follows the keyword.

Portland State

IIIIIIIIII

Order of Evaluation

» The receiver (or an argument) can be
another invocation (message expression)

 Evaluation order is

— parenthesized invocations

— unary invocation, evaluated left to right
— binary invocations, evaluated left to right
— keyword invocations

* No “priorities” for particular operators

— * does not bind more tightly than +

Portland State

IIIIIIIIII

Cascaded Messages (syntactic sugar)

anArray at: 1 put: 9.
anArray at: 2 put: 11.
anArray at: 3 put: 13.

» This can be abbreviated as
anArray at: 1 put: 9; at: 2 put: 11; at: 3 put: 13

rece%gr for all \ /

3 messages “receiverless messages”

 Result is that of the last message send

Transcript show: 'Hello World'; cr

Portland State

IIIIIIIIII

Variables

Instance Variables

- The names of the “slots” in an object, which
make up its representation.

« declared in the class

InstanceVariableNames: 'namel name2'
Temporaries

- Names local to a method body or block

| student professorAtOGI |

Portland State

IIIIIIIIII

Assignment
X=3+5

— make X name the object resulting from the evaluation
of the expression 3 + 5

y := Array new: 1000000
— make y name a new 1MB array
 Variables name objects

— They do not provide storage for objects

 Assigning to a variable makes it name a
different object

— No object is created or copied by assignment

Portland State

IIIIIIIIII

20

Learning More

 Finding Classes

— By name or fragment of a name
- command-f in the Class-category pane of a browser

— By selecting a morph and choosing browse morph
class from the debug menu

Portland State

IIIIIIIIII

21

 Finding methods

— By name fragment or by example — with the method
finder

— Smalltalk browseMethodsWhoseNamesContain:
'screen'

— Smalltalk browseMethodsWithString: 'useful’, or
highlight the string and type command-E

— highlight a selector, choose implementors of ...
(command-m) or senders of ...(command-n)

Portland State

IIIIIIIIII

22

Finding Answers

Some invaluable resources:
» The Squeak “Swiki”

— a wiki is a website where anyone is free to contribute
to editing and maintenance

— http://minnow.cc.gatech.edu/squeak
- snapshot at http://swikimirror.squeakspace.com/

» Squeak.org

— Documentation, tutorials, swikis, other sites, books
and papers, downloads, and information on ...

Portland State

IIIIIIIIII

23

» The Squeak mailing list

— a friendly place where “newbies” are made welcome

— squeak-request@cs.uiuc.edu

— Archive of [FIX]es, [ENH]ancements, [GOODIE]s...
http://swiki.gsug.org:8080/SQFIXES

— Searchable archive of whole list
http://groups.yahoo.com/group/squeak

Portland State

IIIIIIIIII

24

Creating Objects in Smalltalk

* Object are created by sending a
message to some other (exisiting!)
object called a factory

e Usually, the factory object is a class, e.g.

OrderedCollection new.
Array with: 'one' with: 'two' with: 'three’.
S ;= Bag new.

 The object will be deallocated automatically
when it's no longer needed (garbage collected)

Portland State 2>

IIIIIIIIII

Blocks

 Blocks are Smalltalk objects that represent Smalltalk
code

[1+2]
They can have arguments:

[x | 1+x] compare with)\ x. 1+ X

* Blocks understand messages in the value family:

value value:
value: value: value: value: value:

e The Block is not evaluated until it receives a value
message

Portland State 26

IIIIIIIIII

Examples of Blocks

e |f-then-else is not a built-in control
structure: it's a message

aBoolean ifTrue: trueBlock ifFalse: falseBlock

discountRate := (transactionValue > 100)
IfFalse: [0.05] ifTrue: [0.10]

* You can build your own control structures:

(keyEvent controlKeyPressed)
and: [keyEvent shiftKeyPressed]

Portland State 27

IIIIIIIIII

Returning an Answer

t returns an answer from a method

— if there is no 1, the method returns self

— 1 is very useful to return from a block

color
color ifNil: [1 Color black].
1 color

— 1 in a block returns from the method in which the
block is defined

- not the method that evaluates the block!

Portland State

IIIIIIIIII

28

Arrays

e Arrays in Smalltalk are Objects

 They are “special” in 2 ways

1.

nere Is language syntax to create them

#(

{4-

3.4 #symbol) an array literal

3. 17/5 asFloat . (‘'sym','bol') asSymbol}
a dy wamicaLLg constructed array,

Array with: 4-3 with: 17.0/5 with: #symbol the same

2. there are ByteArrays, FloatArrays as well as Arrays

Portland State

IIIIIIIIII

29

Characters & Strings

 Characters are also objects
$H is the literal for the character H

$H asciiValue is 72
$H digitValue is 17, $3 digitValue is 3

e collect: creates a new array by applying a
function to all elements of the receiver

'01234567890ABCDEF' asArray
collect: [:each | each digitValue]
evaluatesto #(012345678901011 1213 14 15)

Portland State 30

IIIIIIIIII

Other enumeration methods

anArray do: aBlock

applies aBlock to each element of anArray, and
answers anArray

anArray withIndexCollect: a2ArgumentBlock

answers the new array containing the results of
applying a2ArgumentBlock to each element of
anArray, together with its index.

anArray withindexDo: a2ArgumentBlock

Portland State 3|

IIIIIIIIII

Examples

#(#one #two #three #four) withindexCollect:
[:each :i |
each,' ="', i asString]
evaluates to #('one = 1' 'two = 2' 'three = 3' ‘four = 4')
#(#one #two #three #four) withiIndexDo:
[:each :i |
Transcript nextPutAll: each,' ="; show: i; cr]

evaluates to # (#owne #two #three #four), L.e., the recelver

Portland State 32

IIIIIIIIII

Indexing Arrays

o {#eins. #zwel. #dreil} at: 1
o {#eins. #zwel. #drel} first
o {#eins. #zwel. #drei} third

o {#eins. #zwel. #drei} at: 2 put: #deux

modifies the receiver, and answers #oeux

Portland State

IIIIIIIIII

33

Assignment |:
Whole objects

® Parse numerals into
numbers without using
explicit loops or
recursion

® Use the algorithm
shown

Portland State

UNIVERSITY

146
le:-:plu:ude

31, %4, 361

ldigiﬁ?alue

1146}

l reversed

1641}

lpaired‘ﬁfithlﬂnwersﬂflﬂ

116

.1} {4, 10, {1. 100} }

lpairwmel:'mdu-:t

16, 40, 100}

l A bhii]
146

34

