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Objects are responsible for their own
actions!

» In procedural programming, | write code
that reaches into the internals of some data
structure and twiddles with the bits
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» In O-O programming, | politely request
some other object to perform some work on
my behalf, and it politely answers me

ws ] 1
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» In O-O programming, | politely request
some other object to perform some work on
my behalf, and it politely answers me

Encapsulation
boundary concat
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some other object to perform some work on
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Computation as Simulation

 Encapsulation is key
 Autonomous objects in the program
represent objects in the real world

e just like discreet event simulation

 Antropomorphize!

e |t's OK to think about this object talking to that
object...

e |n fact, it's recommended
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Programming Philosophy

* Object-Oriented programming is
programming by simulation.

— The algorithm is less important than the structure of
the solution.

* When requirements change:

— If the structure represented the structure of some
‘reality’, then the new requirements will be consistent
in that reality.

— Object-oriented design is the search for this
structure: uncover the structure rather than construct

In isolation.
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Shopping vs. Building

 Constructing an Object-oriented
application is a process of shopping for the
components that one needs

— occasionally we add a new item to the shelf.

— usually we can find a component that almost fits.

- The openness of an OO language allows
the programmer to change the component
that almost fits into one that is a good fit.

— works only if we have a rich set of components on the
shelf, and if they are open to change.
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Is this the only view of OO
Programming?

No! People disagree on the meaning and
role of:

. Encapsulation

. Types

’
2

3. Inheritance
4. Polymorphism
5

. Sets and classes
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Smalltalk

« Squeak is an open-source version of
Smalltalk.

— Smalltalk is still the best example of a Pure O-O
language

— The Squeak workspace is a place in which you can
create and interact with objects.

 Large and active community of contributors

— Runs “bit identical” on just about any platform,
including many PDAs
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The Squeak Environment

A “place” to experiment with objects

 Forget applications, files, compilers, data...
* Focus on objects

Portland State

IIIIIIIIII



Portland State

IIIIIIIIII

The Squeak World
0‘\)00\‘ —
9

sources &

image
changes

host OS




Smalltalk Syntax

* No syntax for classes, packages, etc.

— Class creation and method categorization are done
iImperatively using the development tools

- The method syntax is simple, but different

>= aString

"Answer whether the receiver sorts after or equal to
aString. The collation order is simple ascii (with case
differences)."

A (self compare: self with: aString collated: AsciiOrder) >= 2
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Smalltalk Syntax

* No syntax for classes, packages, etc.

— Class creation and method categorization are done
iImperatively using the development tools

- The method syntax is simple, but different

name of argument
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Smalltalk Syntax

* No syntax for classes, packages, etc.

— Class creation and method categorization are done
iImperatively using the development tools

- The method syntax is simple, but different

>= aStrin

"Answer whether the receiver sorts after or equal to
aString. The collation order is simple ascii (with case
differences)."

A (self compare: self with: aString colladed: AsciiOrder) >= 2

method comment
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Smalltalk Syntax

* No syntax for classes, packages, etc.

— Class creation and method categorization are done
iImperatively using the development tools

- The method syntax is simple, but different

>= aString

"Answer whether the receiver sorts after or equal to
aString. The collation order is simple ascii (with case
differences)."

A (self compare: self with: aString collated: AsciiOrder) >= 2
A

\
cOde'
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Read code

* The best way to become familiar with Smalltalk
programming is to read the code in the image

e Expecttoread 10 to 100 lines of code for each
one that you write

e |f you find that you are writing long methods,
you haven't “got it” yet.

* Find a method in the image that does
something like what you want, an learn from it
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Smalltalk — The Language

Literal Objects

27 The unique object 27

18.5 The floating point number 18.5

1.85e1 same as above

'a string’ a string

#request the symbol request. It is unique; two symbols

with the same name denote the same object

$r the single character r

#(3- 2.7 'a string’) | an array literal. This is a heterogeneous array
containing an integer, a float, and a string
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Sending Messages

Unary Message (no arguments)

 pising

receiver

(target of message) selector

» selector is a keyword-like symbol

— examples: 3 factorial
7/ negated
$c asinteger

— note: no colon at the end of the symbol
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Binary Message (one argument!)

e

receiver selector

» selector is one or two special characters
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/=5
1 +3
17 /1 3

171/3

message = 5 sent to object 7
message + 3 sent to object 1

message // 3 sent to integer object 17
(result is 5)

message / 3 sent to integer object 17
(result is )



Binary Message (one argument!)

» selector is one or two special characys
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/=5
1 +3
17 /1 3

171/3

receiver

e

selector

Not exactly; i is

not an object. It'sa
variable that's bound to
an object

message = 5 sent to object 7
message + 3 sent to object 1

message // 3 sent to integer object 17
(result is 5)

message / 3 sent to integer object 17
(result is )



Keyword Messages

* Ohe or more arguments

— Examples:

#3579 11) at: 2
game movefrom: pinA to: pinB using: pinC
5 between: 0 and: 9

* The colon *;’ indicates to the parser that an
argument follows the keyword.
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Order of Evaluation

» The receiver (or an argument) can be
another invocation (message expression)

 Evaluation order is

— parenthesized invocations

— unary invocation, evaluated left to right
— binary invocations, evaluated left to right
— keyword invocations

* No “priorities” for particular operators

— * does not bind more tightly than +
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Cascaded Messages (syntactic sugar)

anArray at: 1 put: 9.
anArray at: 2 put: 11.
anArray at: 3 put: 13.

» This can be abbreviated as
anArray at: 1 put: 9; at: 2 put: 11; at: 3 put: 13

rece%gr for all \ /

3 messages “receiverless messages”

 Result is that of the last message send

Transcript show: 'Hello World'; cr
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Variables

Instance Variables

- The names of the “slots” in an object, which
make up its representation.

« declared in the class

InstanceVariableNames: 'namel name2'
Temporaries

- Names local to a method body or block

| student professorAtOGI |
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Assignment
X=3+5

— make X name the object resulting from the evaluation
of the expression 3 + 5

y := Array new: 1000000
— make y name a new 1MB array
 Variables name objects

— They do not provide storage for objects

 Assigning to a variable makes it name a
different object

— No object is created or copied by assignment
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Learning More

 Finding Classes

— By name or fragment of a name
- command-f in the Class-category pane of a browser

— By selecting a morph and choosing browse morph
class from the debug menu
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 Finding methods

— By name fragment or by example — with the method
finder

— Smalltalk browseMethodsWhoseNamesContain:
'screen'

— Smalltalk browseMethodsWithString: 'useful’, or
highlight the string and type command-E

— highlight a selector, choose implementors of ...
(command-m) or senders of ...(command-n)
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Finding Answers

Some invaluable resources:
» The Squeak “Swiki”

— a wiki is a website where anyone is free to contribute
to editing and maintenance

— http://minnow.cc.gatech.edu/squeak
- snapshot at http://swikimirror.squeakspace.com/

» Squeak.org

— Documentation, tutorials, swikis, other sites, books
and papers, downloads, and information on ...
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» The Squeak mailing list

— a friendly place where “newbies” are made welcome

— squeak-request@cs.uiuc.edu

— Archive of [FIX]es, [ENH]ancements, [GOODIE]s...
http://swiki.gsug.org:8080/SQFIXES

— Searchable archive of whole list
http://groups.yahoo.com/group/squeak

Portland State
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Creating Objects in Smalltalk

* Object are created by sending a
message to some other (exisiting!)
object called a factory

e Usually, the factory object is a class, e.g.

OrderedCollection new.
Array with: 'one' with: 'two' with: 'three’.
S ;= Bag new.

 The object will be deallocated automatically
when it's no longer needed (garbage collected)

Portland State 2>
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Blocks

 Blocks are Smalltalk objects that represent Smalltalk
code

[1+2]
They can have arguments:

[x | 1+x] compare with )\ x. 1+ X

* Blocks understand messages in the value family:

value value:
value: value: value: value: value:

e The Block is not evaluated until it receives a value
message

Portland State 26
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Examples of Blocks

e |f-then-else is not a built-in control
structure: it's a message

aBoolean ifTrue: trueBlock ifFalse: falseBlock

discountRate := (transactionValue > 100)
IfFalse: [0.05] ifTrue: [0.10]

* You can build your own control structures:

( keyEvent controlKeyPressed )
and: [keyEvent shiftKeyPressed]
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Returning an Answer

t returns an answer from a method

— if there is no 1, the method returns self

— 1 is very useful to return from a block

color
color ifNil: [1 Color black].
1 color

— 1 in a block returns from the method in which the
block is defined

- not the method that evaluates the block!
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Arrays

e Arrays in Smalltalk are Objects

 They are “special” in 2 ways

1.

nere Is language syntax to create them

#(

{4-

3.4 #symbol) an array literal

3. 17/5 asFloat . (‘'sym','bol') asSymbol}
a dy wamicaLLg constructed array,

Array with: 4-3 with: 17.0/5 with: #symbol the same

2. there are ByteArrays, FloatArrays as well as Arrays
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Characters & Strings

 Characters are also objects
$H is the literal for the character H

$H asciiValue is 72
$H digitValue is 17, $3 digitValue is 3

e collect: creates a new array by applying a
function to all elements of the receiver

'01234567890ABCDEF' asArray
collect: [ :each | each digitValue]
evaluatesto #(012345678901011 1213 14 15)
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Other enumeration methods

anArray do: aBlock

applies aBlock to each element of anArray, and
answers anArray

anArray withIndexCollect: a2ArgumentBlock

answers the new array containing the results of
applying a2ArgumentBlock to each element of
anArray, together with its index.

anArray withindexDo: a2ArgumentBlock
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Examples

#(#one #two #three #four) withindexCollect:
[ :each :i |
each,' ="', i asString]
evaluates to #('one = 1' 'two = 2' 'three = 3' ‘four = 4')
#(#one #two #three #four) withiIndexDo:
[ :each :i |
Transcript nextPutAll: each,' ="; show: i; cr]

evaluates to # (#owne #two #three #four), L.e., the recelver
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Indexing Arrays

o {#eins. #zwel. #dreil} at: 1
o {#eins. #zwel. #drel} first
o {#eins. #zwel. #drei} third

o {#eins. #zwel. #drei} at: 2 put: #deux

modifies the receiver, and answers #oeux
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Assignment |:
Whole objects

® Parse numerals into
numbers without using
explicit loops or
recursion

® Use the algorithm
shown
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